
CPS122 Lecture: Unit Testing / Test-First Development

Last revised February 19, 2018
Objectives:

1. To introduce test-first development
2. To show how to use JUnit

 Materials :

1. Projectable diagrams for UMLImplementation labs and class EnrolledIn:
a. Overall class structure
b. CRC Card for EnrolledIn
c. Detailed Design for class EnrolledIn

2. Code for demos
a. Netbeans project with skeleton of class EnrolledIn (methods not

implemented) and no JUnit tests.
b. Netbeans project with completed tests.
c. Netbeans project with completed tests and code.

I. Test-First Development

A.As you may recall, we saw earlier that coding comprises about 1/6 of the total
effort on a project. How much effort do you think testing comprises (or at
least should comprise)?  
 
ASK  
 
About 50%!  
 
(The fact that there's so much buggy software out there suggests that what
should be done and what actually is done are not the same thing!)

B. We will talk more about testing later in the course, but for now note that there
are actually several different kinds of testing that need to be done.

�1

1. Unit testing tests the individual pieces of the system - e.g,, in an OO
system, the individual methods. Any errors discovered by this process are
fixed before development proceeds. We will look at an approach to doing
this shortly.  
 
This should be done during implementation.

2. Integration testing puts several (already tested) units together to test how
they work together. Any errors discovered at this time are likely the result
of a misunderstanding about the interface of one of the methods.  
 

EXAMPLE:  
 
Suppose a certain method is required to compare two objects and return
true or false based on their relative order in a sorted list. Assume this
method is used by another method that actually sorts the objects.  
 
Suppose the author of the method understands the expectation to be that the
method returns true if the first object belongs before the second, but the
author of a sorting method that uses it assumes that it returns true if the
second object belongs before the first. 
 
Both methods would test successful during unit testing (based on their
author’s understanding of the interface between them.) However, the error
would show up in integration testing with the output being backwards!  
 
This, too, should be done during implementation.

3. System testing tests the overall functioning of the system relative to the
specifications (the use cases). By its very nature, this can't be done until
implementation is at least nearly complete.

4. Regression testing is the repetition of tests that have already been passed
after a fix/change has been made to be sure that the change has not broken
another part of the system.

�2

a) This sort of testing is done as needed during implementation

b) It is also done during maintenance

c) To facilitate this, tests are automated where possible. (We will shortly
see an example of this with unit tests).

5. The "50% of effort" rule of thumb includes all kinds of testing that occur
during implementation, of course.

C. Today, we are going to focus on a type of testing done as a class is being
implemented: unit testing.

1. Many software development organizations actually use an approach to this
known as test-first development.

a) The idea is this. Before writing the code for a method, one first writes
the specification (perhaps in the form of comments) and write code to
test the method before the method itself is actually written.

b) This may seem counter-intuitive - but the idea is that writing a
specification and a test helps clarify what is to be done before actually
doing it.  
 

Experience has shown that this actually significantly improves code
quality and effort.

c) Last semester those of you who were in CPS121 saw an approach like this
using pydoc and pytest. We have already seen that there is a similar facility
for documenting Java code known as javadoc, and we will shortly see that
there is a similar facility for unit testing Java code known as JUnit.

d) You will use this approach during labs 8-10, and will also be expected to
use it on your team project. In fact, I will not give you any help with
code unless I first see your specification in the form of prologue
comments and - in the case of model classes - your JUnit tests.

�3

II.JUnit

A.For Java, there is a unit-testing framework called JUnit which performs similar
functions to those provided by pytest - though, of course, the details of using it
are quite different.

B. We will introduce this framework via an example, using a class that will be
part of the the code you are working with for Labs 8-10. Wo first a brief
introduction to the student registration system being used in these labs might
be in order.

1. The labs are built around the following class structure. (Actually, what we
are looking at here represents just a portion of the overall structure. The lab
requirements contain a more detailed structure.)  
 
PROJECT Overall structure

2. The heart of the registration system model is a collection of courses and a 1

collection of students related by a relationship.

a) Courses and students are related by a many-to-many relationship called
EnrolledIn, using an association class because the EnrolledIn
relationship has an attribute called grade.

b) The EnrolledIn relationship is bidirectional - Course objects
"know" about the Student objects in them, and Student objects
"know" about the Course objects they are in.

c) To model this relationship, both Student and Course objects hold a
collection1 of EnrolledIn objects, and each EnrolledIn object holds a
reference to a particular Student and Course, as well as a grade.

 When we use the term “collection” with a small “c” we mean any kind of collection (including a Map) - 1

not just a class that implements the Collection (capital “C”) interface.

�4

3. For this example, we will focus on the class EnrolledIn. Its role can be
described by the following CRC card:

a) PROJECT EnrolledIn CRC Card

b) PROJECT Detailed design for EnrolledIn

C. Demonstration of developing unit tests for EnrolledIn

1. PROJECT skeleton for class (just prologue comments and method
prototypes- no code)

2. Before we actually begin writing code for the methods of EnrolledIn we
can develop mechanisms for testing them.

3. Demonstrate creating JUnit tests using NetBeans

a) Point out no test folder in project

b) Create tests

c) Show test folder and contents of created file.  

4. Open project with completed tests and show tests.

5. Demo implementation of a couple of methods and show results in testing

6. Open project with completed tests and code and demo testing.  

7. Demo some errors and show how JUnit catches:

a) Omit assignment of grade in setGrade()

b) Omit initialization of student in Constructor

�5

c) Return WIP for grade if course in progress.

(1)Do you see a difference between the expectation of a test and the
prologue comment for a method?  
 

(Test for getGrade() for a course where no grade has been set
expects "WIP", while prologue comment for method says it returns
null in this case.)

(2) Could be handled in one of two ways

(a)Omit initialization of grade in Constructor

(b)getGrade() method returns "WIP" rather than null if no grade set.

�6

